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Introduction
The novel object recognition (NOR) task was developed by 
Ennaceur and Delacour and is based on the natural propensity of 
rats to explore novel objects (Ennaceur and Delacour, 1988). It is 
a non-rewarded, ethologically relevant test of visual object rec-
ognition memory (Puma et  al., 1998). Indeed, NOR has been 
listed by the Measurement and Treatment Research to Improve 
Cognition in Schizophrenia initiative as relevant for studying 
visual learning and memory deficits in schizophrenia (Young 
et al., 2009). Such tests of visual recognition memory are increas-
ingly being used to detect novel drugs for improvement of cogni-
tive dysfunction in schizophrenia and other human disorders, 
including Alzheimer’s disease, Parkinson’s disease, and Autism 
Spectrum Disorder (Grayson et al., 2015).

The brain regions thought to be involved in object recognition 
memory depend on the length of the inter-trial interval (ITI). We 
have recently shown that normal unimpaired animals lose the 
ability to discriminate objects following an ITI of 6 h (McLean 
et al., 2016). Rats with hippocampal lesions exhibit impairments 
in object recognition following long ITIs (>15 min), but not short 
intervals of <15 min (Clark et al., 2000). Although much of the 
evidence indicates a critical role for the perirhinal cortex in object 
recognition memory following short ITIs (Brown and Aggleton, 
2001; Ennaceur et al., 1996; Gaffan and Murray, 1992; Hannesson 

et al., 2004; Meunier et al., 1993), research also suggests that the 
prefrontal cortex (PFC) may also contribute to recognition mem-
ory. PFC neurons have been shown to relay information concern-
ing the relative familiarity of individual stimuli (Xiang and 
Brown, 2004), and damage to this area has been shown to impair 
recognition memory (Kolb et al., 1994; Ragozzino et al., 2002). 
More recently, fMRI studies have demonstrated that disruption of 
mPFC activation is correlated with impairments in recognition 
memory (Zanto et al., 2011). However, there is also conflicting 
evidence showing that cytotoxic lesions of the mPFC spared 
object recognition performance following a 10 min ITI (Yee, 
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2000); this further highlights the need to further investigate the 
role of the PFC in this behavioural task.

Dysfunction in the glutamatergic system is a prominent 
hypothesis for the pathogenesis of schizophrenia (Olney et  al., 
1999). As a result of this hypothesis, many pre-clinical animal 
models for schizophrenia are now based on the administration of 
NMDA receptor antagonists such as phencyclidine (PCP), 
MK-801 and ketamine (Neill et al., 2014). The non-competitive 
NMDA receptor antagonist PCP has been shown to produce 
enduring cognitive deficits similar to those observed in schizo-
phrenia in rodents (Javitt and Zukin, 1991; Meltzer et al., 2013), 
particularly when administered sub-chronically (sc) (Janhunen 
et al., 2015; Jentsch and Roth, 1999; Neill et al., 2010; Rajagopal 
et al., 2014). Indeed, we have consistently shown in our labora-
tory that a sub-chronic phencyclidine (scPCP) treatment regimen 
produces long-lasting and robust cognitive impairments in sev-
eral cognitive domains of relevance to schizophrenia, including 
visual learning (McLean et al., 2011; Neill et al., 2016), reason-
ing and problem solving (McLean et al., 2010, 2012; Neill et al., 
2016), executive function (McLean et  al., 2012) and attention/
vigilance (Barnes et al., 2012, 2016).

While newer compounds for cognition and negative symp-
toms, the major unmet clinical needs in schizophrenia, targeting 
mechanisms such as the metabotropic glutamate receptor 2/3 
subtype, phosphodiesterase subtype 10, glycine transporter sub-
type 1 and the α7 nicotinic acetylcholine receptor have been the 
subject of intense drug discovery and development efforts; there 
is still a lack of success in phase III clinical trials (Dunlop and 
Brandon, 2015). Dopamine hypofunction in the PFC is thought 
to have a major role in the aetiology of negative symptoms and 
cognitive dysfunction in schizophrenia (Abi-Dargham and 
Moore, 2003; Goldman-Rakic et  al., 2004; Jentsch and Roth, 
1999; Stone et al., 2007). scPCP has been shown to reduce dopa-
mine utilisation in the PFC and nucleus accumbens (Jentsch 
et  al., 1997). Furthermore, it has been shown that the atypical 
antipsychotics sertindole and risperidone increase extracellular 
dopamine in rat mPFC and nucleus accumbens (Mork et  al., 
2009) and improve a scPCP-induced deficit in NOR memory 
(Grayson et al., 2007; Idris et al., 2010). We have also previously 
shown that targeting dopamine D1 receptors ameliorates the 
effects of scPCP treatment in NOR, reversal learning and the 
5-choice continuous performance test (Barnes et  al., 2016; 
McLean et al., 2009), further implicating the role of dopamine in 
prefrontal-based cognitive tasks.

As yet, the role of dopamine in scPCP-induced cognitive dis-
ruption remains to be fully established. Therefore, the aim of this 
study was to investigate the interaction between the NOR deficit 
induced by our scPCP treatment regime and levels of PFC dopa-
mine. This was achieved by combining in vivo microdialysis in 
freely moving behaving animals to assess the changes in PFC 
dopamine at the same time as observing a cognitive deficit.

Materials and methods

Subjects and drug treatment

Twelve adult female Lister Hooded rats (Charles River, UK) 
were housed in groups of 2–3 and weighed 220–250 g at the start 
of the dosing regimen and 240–270 g at the time of surgery and 
behavioural testing. Animals were housed under standard 

laboratory conditions at a temperature of 20°C (±1°C) and 
humidity of 50 ±5%. They were maintained on a 12-h/12-h light/
dark cycle (lights on at 0700 h) and experimental procedures 
were performed during the light phase. Rats had free access to 
food and water at all times, except during NOR testing and habit-
uation. Rats were treated with 2 mg/kg PCP (PCP hydrochloride, 
Sigma, UK; n = 5) or vehicle (0.9% saline; n = 7), twice daily for 
7 days; this was followed by a 7-day washout period. All experi-
ments were performed according to the Animals (Scientific 
Procedures) Act 1986, and with approval from the University of 
Leicester Animal Ethics Committee.

Surgery and microdialysis

Rats were anaesthetised with isoflurane (1–3% isoflurane in O2: 
1 L/min) and stainless steel guide cannulae (o.d., 890 μm; i.d., 
685 μm; length 10 mm: Coopers Needle Works, Birmingham, 
UK) were stereotaxically implanted into the brain, aimed at the 
PFC, Figure 1. Following recovery from surgery (⩾7 days), dial-
ysis probes were inserted into the guide cannulae to lie in the PFC 
with stereotaxic co-ordinates (tip position mm from Bregma: H, 
+3.2; Tr, –0.5; V, –5.4; (Paxinos and Watson, 1998)). Microdialysis 
probes were constructed in-house and checked for flow rate 
integrity and leaks before implantation (Young et al., 1998). At 
least 1 h after implantation of the probe, animals were connected 
to the delivery system, and perfusion with artificial cerebrospinal 
fluid (mM: NaCl, 145; KCl, 3.3; MgSO4, 2.4; KH2PO4, 1.25; 
CaCl2, 1.85: 2 μL/min flow rate) commenced immediately. 
Following equilibration for 1 h, dialysate samples were collected 
consecutively for 10 min into 2 μL of 1.0 M H3PO4 (to minimise 
oxidation). The first four samples (40 min) were used to deter-
mine basal dopamine levels in the dialysates. Samples were then 
collected during the NOR test during the 10 min habituation to 
the box, acquisition, ITI and retention phases (all 10 min); in 
addition, three samples were collected post-testing (30 min). At 
the end of the collection period, animals were killed by anaes-
thetic overdose (sodium pentobarbitone, JML, Southampton, 
UK) and cervical dislocation. The brains were removed and 
stored in 4% formalin and placement of the probes confirmed 
using cresyl violet staining.

NOR testing

Rats were tested in the NOR task as described in detail previ-
ously (McLean et al., 2011), with the exception that 10 min trials 
were used with a 10 min ITI (not 3 min trials with a 1 min ITI, our 
usual protocol) in order to give enough time to collect the 
required sample for HPLC analysis. Rats were habituated to the 
test arena for 30 min for 3 days prior to the test day. Following a 
10 min habituation session on the day of testing, each rat was 
placed in the NOR chamber and exposed to two identical objects 
for a period of 10 min. The rats were then returned to their home 
cage for an ITI of 10 min; the entire box was cleaned with 10% 
ethanol, both objects removed and one replaced with an identical 
familiar copy and one with a novel object. Following the ITI, rats 
were returned to explore the familiar and a novel object in the test 
arena for a 10 min retention trial. All experiments were video 
recorded for subsequent behavioural analysis by an experimenter 
blinded to the treatment. Locomotor activity (LMA) was also 
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recorded; this was evaluated by scoring the total number of sec-
tors or line crossings by the animal in acquisition and retention 
trial. The exploration time (s) of each object in each trial was 
recorded manually using two stopwatches and the discrimination 
index (DI) was calculated: DI = (time exploring the novel object 
(s) – time exploring the familiar object) / total time exploring 
both novel and familiar objects. The DI represents the difference 
in exploration time expressed as a proportion of the total time 

spent exploring the two objects in the retention trial. A value of 1 
would show that rats explored only the novel object; a value of –1 
would show that rats only explored the familiar object and a 
value of 0 indicates exploration of both objects equally.

HPLC detection of dopamine

After collection, all dialysate samples (1–11) were analysed to 
determine the concentration of dopamine in each sample by 
HPLC with electrochemical detection. Samples (15 μL) were 
injected onto the column using a Spark Triathlon refrigerated 
autosampler (Presearch, UK). The mobile phase consisted of 75 
mm NaH2PO4, 1.1 mm octanesulfonic acid, 1 mm EDTA, 10% 
methanol, pH 3.7 and was pumped at 110 μL/min using a Rheos 
4000A pump (Presearch, UK), and separation was achieved 
using a 150 mm × 1.0 mm LUNA C18(2) 5 µm column 
(Phenomenex, UK). Dopamine (retention time of approximately 
12 min) concentrations were calculated with reference to stand-
ards at 1, 10, and 100 nm. Data were collected and analysed using 
Chrom Perfect Analysis v5.5.4 (Justice Laboratories, NJ, USA) 
PC-based integrator. All chemicals were supplied by Sigma 
Chemicals (Poole, UK) and were HPLC grade.

Data and statistical analysis

The NOR data are expressed as mean exploration time ± S.E.M. 
Student’s paired t-test was performed to compare time spent 
exploring the familiar versus the novel object. The DI values are 
expressed as mean ± S.E.M. LMA data are expressed as mean ± 
S.E.M of the total number of lines crossed during the acquisition 
and retention trials. Analysis of the DI values and total LMA 
were performed using independent t-tests, vehicle compared with 
the scPCP group.

The basal concentration of dopamine was calculated from the 
four samples taken prior to behavioural testing; subsequent sam-
ples were then expressed as percent of basal. Microdialysis data 
were analysed using a repeated measures two-way ANOVA with 
stage of task as a within-subjects factor (habituation, acquisition, 
ITI, retention, three post-test) and treatment (vehicle or scPCP) 
as a between-subjects factor. This was followed by planned pair-
wise comparisons with Bonferroni adjustment. All statistical 
analyses were performed using SPSS (version 22).

Results
Initially the groups consisted of seven vehicle-treated and five 
scPCP-treated rats; however, two vehicle-treated rats were 
excluded due to technical problems with HPLC. These rats were 
removed from all analyses, therefore the final treatment groups 
were both n = 5. Following cresyl violet staining, the locations of 
the probes were verified. All probes were located within the PFC 
at Bregma 2.7–3.2 mm. An example image of probe location is 
shown in Figure 1.

Paired t-tests revealed that there was no significant difference 
between the time spent exploring the two identical objects during 
the acquisition trial in either vehicle or scPCP-treated rats (data 
not shown). In the retention trial, vehicle-treated rats explored the 
novel object more than the familiar object, although this effect 
was not significant (p = 0.11; Table 1); there was no significant 

Figure 1.  Microdialysis probe placement. Top: coronal image 
reproduced from Paxinos and Watson (1998) The Rat Brain Atlas in 
Stereotaxic Coordinates with permission from Elsevier, Bregma 2.7 mm 
showing PFC regions. Bottom: Photograph taken at ×4 magnification 
following cresyl violet staining. The solid shaded rectangle represents 
the position of the cannula; the dotted line represents the tip position.
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difference in exploration of the novel and familiar object in 
scPCP-treated rats (Table 1). However, an independent t-test 
revealed a significant difference in the DI (t[9] = 2.87; p = 0.018). 
The DI for the scPCP-treated group was significantly reduced 
from 0.60 in the vehicle-treated group to 0.25 (Figure 2). 
Moreover, one-sample t-tests showed that the DI was signifi-
cantly different from zero (no discrimination) in the saline treated 
animals (t[5] = 8.41; p < 0.001), but not in the scPCP pre-treated 
group (t[4] = 2.34; p = 0.78). Independent t-tests showed no sig-
nificant effect on LMA assessed by the total number of line cross-
ings in the acquisition and retention trials (76.5 ± 19.6 in 
vehicle-treated rats compared with 97 ± 16.9 in scPCP-treated 
rats; data not shown).

Following the behavioural experiments, HPLC was carried 
out; therefore the groups for dopamine analysis were vehicle (n = 
5) and scPCP (n = 5). The mean of the four baseline concentra-
tions prior to behavioural testing was calculated. An independent 
t-test revealed no significant difference between basal levels in 
the two groups (vehicle, 3.3 ± 2.0 nm; scPCP, 2.9 ± 0.6 nm). Data 
were subsequently expressed as percent of basal (Figure 3). A 
two-way repeated measures ANOVA with stage of test as the 
within-subjects factor and treatment as the between-subjects 

factor revealed no significant interaction (F[4,32] = 1.89; p = 0.13). 
However, planned pair-wise comparisons with Bonferroni adjust-
ment revealed a selective and significant increase in dopamine 
levels in vehicle-treated rats in the retention phase compared with 
basal (290 ± 120% of basal; p < 0.01); however, this effect was 
not observed in scPCP-treated rats (113 ± 19% of basal).

Discussion
This study aimed to investigate the role of prefrontal dopamine in 
deficits in NOR task performance in the scPCP animal model for 
schizophrenia. The main findings suggest that an increase in 
dopamine in the PFC during the retention trial may be beneficial 
for NOR performance either by increasing the preference for the 
novel object or for aiding the recall of memory for the familiar 
object. During the acquisition trial of the NOR task there was no 
difference in the exploration time of the two identical objects in 
either vehicle or scPCP-treated rats. Conversely, in the retention 
trial, calculation of the DI revealed that vehicle-treated rats could 
discriminate the novel from familiar object in the retention trial, 
suggesting that they remembered the familiar object. However, 
this discrimination was not observed when comparing time spent 
at the novel versus the familiar object; this lack of discrimination 
is likely due to the low numbers and subsequent large variability 
within the group. In the scPCP-treated rats, however, the object 
exploration data and the DI revealed that rats could not discrimi-
nate between the novel and familiar objects, suggesting that 
scPCP-treated rats did not remember the familiar object. This 
scPCP-induced deficit in NOR (and its attenuation by dopamine/
serotonin receptor antagonist drugs for schizophrenia and novel 
targets) is supported by many previous studies in our laboratory 
(McLean et  al., 2011; Neill et  al., 2010, 2016) and elsewhere. 
These results are also consistent with previous reports from oth-
ers demonstrating scPCP treatment in rats impairs object recogni-
tion (Le Cozannet et al., 2010; Miyauchi et al., 2016; Redrobe 
et al., 2012). In addition, it has been shown that PCP, when given 

Table 1.  The effect of treatment with vehicle or scPCP on exploration 
times of objects in the NOR task. The effect of treatment with vehicle 
or scPCP (2 mg/kg, twice daily for 7 days, i.p. followed by 7 days drug 
free) in the NOR task. Data are shown as mean exploration times ± 
S.E.M (n = 5 per group). There were no significant differences between 
time spent exploring the novel and familiar object in either treatment 
group.

Group Exploration time (s)

Acquisition Retention

Left Right Novel Familiar

Vehicle 20.7 ± 6.6 19.8 ± 5.1 24.7 ± 11.4 6.0 ± 2.3
PCP 24.8 ± 3.6 24.2 ± 3.5 27.0 ± 6.2 17.2 ± 4.0

Figure 2.  The effect of treatment with vehicle or scPCP (2 mg/kg, 
twice daily for 7 days, i.p. followed by 7 days drug free) in the NOR 
task. Data are shown as mean DI ± S.E.M (n=5 per group). The DI for 
the scPCP-treated group was significantly reduced compared to the 
vehicle group (*p < 0.05).

Figure 3.  Relative concentrations of dopamine in the PFC expressed 
as percent basal in vehicle and scPCP-treated rats at each stage of the 
NOR task. Data are shown as mean percent of basal ± S.E.M (n = 5). 
**p < 0.01 significant increase in dopamine in the retention phase 
compared to basal level.
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in varying dosing regimens, produced deficits in object recogni-
tion in mice (Hashimoto et al., 2005; Horio et al., 2013; Nagai 
et al., 2009; Rajagopal et al., 2016).

The concentration of dopamine in the PFC revealed that the 
basal levels in vehicle and scPCP-treated rats were similar. 
Concentrations were also comparable during all stages of the 
NOR task with the exception of the retention trial, in which a large 
increase in dopamine was observed in the vehicle-treated group. 
This suggests that dopamine in the PFC is important for retrieval 
of object recognition memory, not encoding or consolidation, as 
levels remained comparable with baseline during the acquisition 
trial and ITI. In contrast, this increase in prefrontal dopamine was 
absent in the scPCP-treated group. In collaboration with the 
Meltzer laboratory we conducted a similar study some years ago 
(published in abstract form only). There were some differences as 
in that study we used female Long Evans rats, 15 min time bins, 
also investigated hippocampus and did not include so many time 
points (Snigdha et al., 2008). However, our current findings con-
firm that early result and show impaired performance in retention 
accompanied by a lack of increase in dopamine in the PFC.

It has been shown that many dopamine/serotonin receptor 
antagonist drugs for schizophrenia such as sertindole and risperi-
done (Mork et al., 2009), and clozapine, olanzapine and quietap-
ine (Tanda et al., 2015) increase extracellular dopamine in male 
rat mPFC. More specifically, we have shown that intracortical 
perfusion of the dopamine D1-like receptor agonist, SKF-38393, 
in drug-naïve awake male rats decreased glutamate and increased 
GABA release in the mPFC, potentially restoring the balance 
between glutamate and GABA (Harte and O’Connor, 2004). We 
have also established that SKF-38393, when given systemically, 
can reverse the scPCP-induced deficit in NOR in female rats 
(McLean et al., 2009). This is supported by data reporting that 
microinfusion of the dopamine D1-like receptor antagonist SCH-
23390 into the rat mPFC produced a deficit in NOR (Clausen 
et al., 2011; Rossato et al., 2013). Conversely in a recent study, 
microinfusion of the D1-like receptor agonist SKF81297 into the 
mPFC induced a dose-related impairment in object recognition 
encoding and retrieval (Pezze et al., 2015). Although these results 
appear conflicting, the authors propose that NOR memory 
requires an optimal level of D1 receptor stimulation in the mPFC 
and may reflect an inverted U-shaped function (Pezze et  al., 
2015). The role of dopamine in the PFC has been further investi-
gated using other selective dopamine receptor agonists and 
antagonists. Bilateral microinjection of the dopamine D3 antago-
nist, S33084, into the rat PFC caused a dose-related improvement 
in NOR, while intra-striatal injection had no effect (Watson et al., 
2012). In contrast, bilateral microinjection of the preferential D2 
antagonist, L741,626, into the PFC (but not striatum) caused a 
dose-related impairment in NOR in rats (Watson et  al., 2012). 
Taken together, these results show that pharmacological manipu-
lation of dopamine levels in the PFC can have either beneficial or 
detrimental effects on object recognition memory, in that they 
follow an inverted U-shaped relationship.

One limitation of the present study is low numbers, as two 
vehicle-treated rats had to be excluded from the final analysis due 
technical problems with the HPLC analysis; therefore, the final 
number of rats (five vehicle and five PCP) was low for a behav-
ioural study. Previous studies in this laboratory have found a 
robust and reproducible deficit with scPCP in NOR when using 
8–10 rats (Neill et al., 2010). Due to the low number of rats used 
here, the error within the groups is large; this is particularly 

apparent in the vehicle group during exploration of the novel 
object and may explain the lack of a significant difference in 
exploration times in the retention trial. However, this is a prelimi-
nary study and clearly requires verification with a larger sample 
size and more detailed analysis of other neurotransmitters.

In summary, these current results demonstrate recruitment of 
dopamine in the PFC when rats are exposed to two objects, one 
new and one familiar. As there was no increase in PFC dopamine 
in the acquisition trial, these new, but preliminary, data support 
the hypothesis that, for rats to recall information about the famil-
iar object they must recruit PFC dopamine, an effect which is 
absent in scPCP-treated rats which may explain why they cannot 
discriminate the novel from familiar object. A link between dopa-
mine and cognition has been observed in patients with schizo-
phrenia, in that low dopamine turnover was associated with poor 
verbal recall (Oades et al., 2005), albeit dopamine was measured 
in plasma and not brain. In conclusion, our findings provide evi-
dence that the scPCP model has considerable validity for investi-
gating cognitive deficits in schizophrenia. Furthermore, the 
ability of novel compounds to restore this PFC dysfunction (and 
the NOR deficit) may well reveal compounds with good efficacy 
in the clinic to overcome cognitive disturbances observed in 
schizophrenia, a current unmet need.
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