Evolution of a maternal immune activation (mIA) model in rats: Early developmental effects

Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester M13 9PT, United Kingdom
Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester M13 9PT, United Kingdom
King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, 5 Cottington Road, London SE5 9RT, United Kingdom
King’s College London, MRC Centre for Neurodevelopmental Disorders, New Hunt’s House, Guy’s Hospital Campus, London SE1 1UL, United Kingdom
Roche Innovation Center Basel, 124 Grenzacherstrasse, Basel, CH 4070, Switzerland
Centre for Biomarker Research and Department of Pharmacy, School of Applied Sciences, University of Huddersfield, HD1 3DH, United Kingdom

ARTICLE INFO
Keywords:
Wistar rat
Poly I:C
mIA (maternal immune activation)
IL-6
Placenta
Microglia

ABSTRACT
Maternal immune activation (mIA) in rodents is rapidly emerging as a key model for neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia. Here, we optimise a mIA model in rats, aiming to address certain limitations of current work in this field. Specifically, the lack of clear evidence for methodology chosen, identification of successful induction of mIA in the dams and investigation of male offspring only. We focus on gestational and early juvenile changes in offspring following mIA, as detailed information on these critical early developmental time points is sparse.

Following strain (Wistar, Lister Hooded, Sprague Dawley) comparison and selection, and polyriboinosinic-polyribocytidylic acid (poly I:C) dose selection (2.5–15 mg/kg single or once daily for 5 days), mIA was induced in pregnant Wistar rats with 10 mg/kg poly I:C i.p. on gestational day (GD) 15. Early morphometric analysis was conducted in male and female offspring at GD21 and postnatal day (PD) 21, eight dams for each treatment at each time point were used, 32 in total. Subsequent microglia analysis was conducted at PD21 in a small group of offspring.

Poly I:C at 10 mg/kg i.p. induced a robust, but variable, plasma IL-6 response 3 h post-injection and reduced body weight at 6 h and 24 h post-injection in two separate cohorts of Wistar rats at GD15. Plasma IL-6 was not elevated at PD21 in offspring or dams. Poly I:C-induced mIA did not affect litter numbers, but resulted in PD21 pup, and GD21 placenta growth restriction. Poly I:C significantly increased microglial activation at PD21 in male hippocampi.

We have identified 10 mg/kg poly I:C i.p on GD15 as a robust experimental approach for inducing mIA in Wistar rats and used this to identify early neurodevelopmental changes. This work provides a framework to study the developmental trajectory of disease-relevant, sex-specific phenotypic changes in rats.
1. Introduction

There is accumulating evidence for the role of neuroinflammatory processes in the aetiology of neuropsychiatric disorders. Epidemiological evidence initially directed researchers towards prenatal infection as an explanation for increased incidence of psychiatric disorders following an influenza epidemic (Mednick, 1988). More recent genome-wide association studies and transcriptome analysis provide genetic support for these observations (Lombardo et al., 2017; Ripke et al., 2014; Voineagu et al., 2011). To fill the gap between epidemiological studies and clinical trials requires appropriate developmental in vivo model systems to identify tractable drug targets (Bespalov et al., 2016). Numerous studies have induced maternal immune activation (mIA) in rodents, mostly in mice, and more recently in rats, using a range of inflammatory stimuli including influenza virus (Shi et al., 2003), lipopolysaccharide (LPS; Urakubo et al., 2001), interleukin IL-6 (Smith et al., 2007) and turpentine (Fortier et al., 2007). The viral-mimetic polyribosinosinic-polyribocytidylic acid (poly I:C) has been most widely used with its administration on specific gestational days (GD; i.e. 9–17) inducing a discrete inflammatory response in the dam, in addition to eliciting behavioural and neurochemical abnormalities in the offspring (Meyer, 2014; Meyer et al., 2006; see Estes and McAllister, 2016 for an excellent recent review). Differences in strain of rodent, dose and route of administration are apparent in the literature (de Souza et al., 2015; Giovannoli et al., 2015; Vernon et al., 2015; Estes and McAllister, 2016), which may contribute to the wide variation seen in different behavioural and neurochemical effects observed across studies. One key issue emerging is the need to establish an early outcome measure to identify offspring likely to show a robust phenotype, essential for enhancing reproducibility across laboratories (Estes and McAllister, 2016). Initial mIA studies predominately used mice, despite the benefits of using rats in complex, cognitively-demanding or social behaviour tasks and for neuroimaging read-outs, to which their size and lack of conspecific-directed aggression confers significant advantage (Abbott, 2004; Yao et al., 2012). More work has now been conducted in rats and no doubt work in both species will bring advantages to this field, but it is unlikely that the same methodology will be appropriate. Experimental studies often only use males owing to their lack of oestrous cycle (suggested to produce less variable data, a common misconception, see in-depth analysis by Prendergast et al., 2014) and the increased prevalence of neurodevelopmental disorders (NDDs) in males (Welting and Geschwind, 2013). However, NDDs are not exclusively a male phenomenon and, with known sex differences in neuroanatomy, neurochemistry and behaviour in rodents (Hughes, 2007), the lack of female data presents an important caveat which may delay our understanding of NDDs and thus the development of effective treatments (Hill, 2015).

A long-term goal of our work is to explore the developmental trajectory of mIA from pre-birth to mature adulthood. Here we start by exploring effects very early in this process, i.e. prior to birth, gestational day (GD) 21 and just prior to weaning, post-natal day (PD) 21. Studying early development is not only important for ASD, which is typically diagnosed by the age of three, but also for investigating pre-morbid and prodromal states in other disorders such as schizophrenia (Knuezel et al., 2014; Lauritsen, 2013). Data from young offspring will be beneficial to further our understanding of impaired developmental processes and thereby provide additional information on potential therapeutic targets to normalise the trajectory (Knuezel et al., 2014). Indeed a very recent, most elegant study describes the evolution of pyramidal cell induced excitation of interneurons in mice, from as early as postnatal day 2, known to be integral to circuitry controlling cognitive function, a clinical unmet need in psychiatry (Wong et al., 2018). With such information emerging about “normal” brain development, we can explore how this might be disturbed in disease models such as the one we describe here. Furthermore, with global enhanced emphasis on early intervention in psychosis, development of an animal model to study the early stage of the illness and its progression is of particular clinical importance. England and Australia have been developing services based on a stratified model of care for psychosis and early intervention since the mid-1990s (e.g. see McGorry et al., 2008) and early intervention in first episode psychosis is now standard practice in many European countries and the UK (NHS England, 2015). More recently, numerous states in the USA have also begun clinical as well as research pathways focused on early intervention (Dixon et al., 2018), albeit current pharmacological interventions are still not being developed within this staged approach (Marwaha et al., 2016).

Our work therefore aims to establish a rat model of mIA by conducting a comprehensive dose-response study in three strains of rat and examination of a poly I:C dosing schedule prior to investigating the morphological effects of poly I-C in both male and female offspring at two early developmental time points. We provide a preliminary analysis of neuroinflammation induced by mIA by looking for evidence of microglial activation in the offspring and IL-6 in plasma at PD21, an early juvenile stage of development, from dams and offspring.

2. Methods

2.1. Animals

See Fig. 1 for detailed description of the 3 studies conducted. Adult non-pregnant rat experiments were performed using female Wistar, Lister Hooded and Sprague Dawley rats (Charles River Laboratories, UK) housed in groups of 4–5. Rats were housed in individually ventilated cages (IVCs) with two levels (GR1800 Double-Decker Cage, Tecniplast, UK) under a standard 12 h light: dark cycle (lights on:7:00 am). The environment was maintained at 21 ± 2 °C, 55 ± 5% humidity. Animals had ad lib access to standard rat chow (Special Diet Services, UK) and water. All procedures adhered to the Animals (Scientific Procedures) Act 1986 and were approved by the University of Manchester AWEIB (Animal Welfare and Ethical Review Body). A total of 76 non-pregnant Wistars (44 for the strain selection study and 32 for the repeated dosing study), 44 Lister Hooded and 44 Sprague-Dawley rats were used, i.e. 8–11 per group. Uneven group sizes occur when tail vein blood could not be collected from an animal for technical reasons, which was thus excluded from the IL-6 analysis, see Fig. 2. In pregnancy, rats were housed in pairs or threes before being singly housed from GD19. Thirty two pregnant Wistar dams were used in total (16 poly I-C and 16 vehicle treated; 8 of each for each time point, GD21 and PD21). See Table 1 for further details of dams, offspring and their experimental pathway. Our studies were conducted in two separate cohorts each with GD21 and PD21 time points, and data pooled. The cohort effect was taken into account in our statistical analysis (see below).

2.2. Experimental procedure and drug administration

See Fig. 1 for experimental design.

Acute systemic inflammation was induced in female Wistar, Lister Hooded and Sprague Dawley rats (n = 8–11 per group; 182–281 g; approximately 10-weeks old) intraperitoneally (i.p.) with saline or poly I:C at 5, 10 or 15 mg/kg; Sigma P9582 (base equivalent weight; Sigma, UK) and blood sampling was performed 3 h post-injection (Choi et al., 2016). We chose the i.p. route to avoid the need to anaesthetise pregnant animals in subsequent studies for intravenous poly I-C administration.

Repeated systemic inflammation was induced in female Wistar rats (n = 8 per group; 195–281 g) by poly I:C (2.5, 5 or 10 mg/kg; i.p.) or saline once daily over 5 consecutive days and blood sampling was performed 3 h post-injection on days 1, 3 and 5.

Maternal immune activation Female Wistar rats were mated when 3 months old. GD 1 was confirmed by the appearance of a vaginal plug. Poly I:C treatment at GD15 has been shown in rats to induce an
Acute systemic inflammation in 3 rat strains

Inject:
- Adult female Wistar, Sprague Dawley, Lister Hooded rats.
- Saline, 5, 10 or 15mg/kg poly I:C i.p.
- n=8-11 per dose per strain

Baseline:
- Body temperature

3h:
- Body temperature
- Tail vein blood sample for cytokine analysis

Repealed systemic inflammation

Inject:
- Adult female Wistar rats
- Saline, 2.5, 5 or 10 mg/kg poly I:C, i.p., for 5-days
- n= 8 per dose

Baseline:
- Body temperature

3h:
- Body temperature
- Tail vein blood sample for cytokine analysis

6h:
- Body temperature

Maternal immune activation

Inject:
- Adult female Wistar rats on GD15
- Saline or 10 mg/kg poly I:C, i.p.
- n= 16 per treatment (n=8 for both saline and poly I:C on GD21 and PD21)

Baseline: 3h: 6h:
- Weight
- Body temperature
- Tail vein blood sample for cytokine analysis

24h:
- Weight
- Body temperature

GD21:
- Offspring morphometric analysis
- Placenta

PD21:
- Offspring morphometric analysis
- Microglia analysis

Fig. 1. Experimental design. Experimental measures/procedures appear in the order taken/conducted.
The environment where this measurement was conducted was 20.7–20.8 °C. Non-pregnant rats were habituated to measurement of rectal temperature for 7 days to minimise any effects of stress caused by this procedure. Pregnant rats were not habituated to this procedure in order to minimise any distress during pregnancy caused by excessive handling.

2.4. Tissue processing

At GD21, pregnant female rats were anaesthetised (4%) and maintained (1.5–2%) with isoflurane delivered in 70:30 N₂O/O₂. Pups and respective placentas were removed and weighed and pup brains were removed and weighed, this was conducted for pups from both cohorts. At PD21, pups were sacrificed, body weights recorded and brain weights recorded from some of these animals.

2.5. Enzyme-linked immunosorbent assay

IL-6 has been shown to be an important mediator of mIA (Choi et al., 2016; Smith et al., 2007) thus IL-6 concentration in blood plasma was determined using a rat-specific ELISA DuoSet (R&D Systems, Abingdon, UK. R&D Systems do not provide intra and inter-assay coefficients of variability (CV) for this assay. Our intra-assay CV was below the recommended 10% (2.4–4%). We ran all samples from each experiment on one plate and once only as the amount of sample

Table 1

<table>
<thead>
<tr>
<th>Number of dams (of dams)</th>
<th>Treatment</th>
<th>GD21 offspring</th>
<th>PD21 body weight</th>
<th>PD21 brain weight</th>
<th>PD21 microglia</th>
<th>Section 3.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 Poly I:C</td>
<td>109 (54f, 55m)</td>
<td>110 (52f, 58m)</td>
<td>52 (28f, 24m)</td>
<td>16 (8f, 8m)</td>
<td>7 m</td>
<td>16 (8f, 8m)</td>
</tr>
<tr>
<td>16 vehicle</td>
<td>105 (46f, 59m)</td>
<td>113 (43f, 70m)</td>
<td>64 (32f, 32m)</td>
<td>23 (12f, 11m)</td>
<td>10 m</td>
<td>16 (8f, 8m)</td>
</tr>
</tbody>
</table>

Fig. 2. Core body temperature (A–C) was recorded at baseline and 3 h post-injection (Wistar, A; Lister Hooded, B; Sprague Dawley, C) rats (N = 8–11). IL-6 (D–F) levels in plasma were measured at 3 h post-injection (i.p) in female non-pregnant Wistar (D), Lister Hooded (E) and Sprague Dawley (F) rats (n = 8–11). Data are presented as mean ± SEM. Statistical analysis was performed using repeated measures two-way ANOVA followed by Bonferroni’s multiple-comparison test (A–C). $ P < 0.05-$$ P < 0.01 = 5 mg; $$$P < 0.001 = 10 mg; * P < 0.05-***P < 0.001 = 15 mg, all compared with vehicle. Kruskal-Wallis test followed by Dunn’s multiple comparison test (D–F) ** P < 0.05, ***P < 0.01, ****P < 0.001 compared with vehicle.

2.4. **Tissue processing**

At GD21, pregnant female rats were anaesthetised (4%) and maintained (1.5–2%) with isoflurane delivered in 70:30 N₂O/O₂. Pups and respective placentas were removed and weighed and pup brains were removed and weighed, this was conducted for pups from both cohorts. At PD21, pups were sacrificed, body weights recorded and brain weights recorded from some of these animals.

2.5. **Enzyme-linked immunosorbent assay**

IL-6 has been shown to be an important mediator of mIA (Choi et al., 2016; Smith et al., 2007) thus IL-6 concentration in blood plasma was determined using a rat-specific ELISA DuoSet (R&D Systems, Abingdon, UK. R&D Systems do not provide intra and inter-assay coefficient of variability (CV) for this assay. Our intra-assay CV was below the recommended 10% (2.4–4%). We ran all samples from each experiment on one plate and once only as the amount of sample
collected was small, so we could not calculate inter-assay CV. Absorbance was measured using a plate reader (MRX, Dynatech, UK) and results were calculated from the standard curve using Prism 6 software (GraphPad, USA). We measured plasma IL-6 in dams from both cohorts, these data are shown in Fig. 4A. IL-6 was also measured in plasma from dams and pups at PD21 from the offspring of cohort 1.

2.6. Tissue preparation and methods for immunohistochemistry

Rats were culled by overdose of anaesthetic (5% isoflurane in O2), brains were perfused with phosphate buffered saline (PBS) 0.1 M, rapidly extracted and half brains from offspring were immerse-fixed in 4% paraformaldehyde, stored in 30% sucrose overnight before being snap-frozen in isopentane and stored at -80 °C until use. Coronal sections (30 μm) through the hippocampus (− Bregma = 3.3 to − 4.8 mm) were cut and stained for Iba1 with a goat polyclonal antibody for 24 h (1:200, Abcam UK). Sections were transferred to biotinylated horse anti-Goat IgG antibody (1:200 for 2 h at room temperature) and revealed by ABC (2 h at room temperature) and DAB (10 min at room temperature) kits (Vector Laboratories, PK-6100 and SK4100) as described previously (McKibben et al., 2010). Sections were mounted on temperature) kits (Vector Laboratories, PK-6100 and SK4100) as de- veiled by ABC (2 h at room temperature) and DAB (10 min at room

2.7. Statistical analysis

Data are presented as mean ± SEM. To illustrate multiple comparisons for non-pregnant rat data we used Bonferroni correction where appropriate for parametric data, and Kruskal-Wallis test followed by Dunn’s multiple comparison where appropriate for non-parametric data. We used ANOVA, and univariate General Linear Models (GLM) to analyse dam traits in SPSS (version 22) with cohort as a fixed factor and other covariates where appropriate, e.g. maternal baseline body weight to account for prior differences between females not caused by treatment (e.g. Ashbrook et al., 2015, 2017). For comparisons between offspring of poly I:C and saline-treated dams and repeated measures in dams, we used General Linear Mixed Models (GLMM) using Restricted Maximum Likelihood (REML) estimation, repeated where appropriate, and with dam as a random variable. Here, the Satterthwaite estimation is used to estimate the degrees of freedom.

3. Results

3.1. Strain differences exist in the rat response to poly I:C

Our first experiment was conducted to optimise a model of mIA in rats by determining whether strain may have an effect on response to mIA and enable choice of the most suitable strain of rat. Vehicle (saline), or poly I:C at 5, 10 or 15 mg/kg was injected via the intraperitoneal route to adult female non-pregnant Wistar, Lister Hooded and Sprague Dawley rats (8–11 females per strain per dose). Elevations in core body temperature (Fig. 2A-C) were observed to a different extent across rat strains (GLMM, F3,96 = 16.15, p < 0.0001). IL-6 is a key mediator of mIA (Smith et al., 2007) and at 10 mg/kg, poly I:C induced a significant elevation in plasma IL-6 in all three strains tested (GLMM, F3, 80 = 8.338, p < 0.0001; Fig. 2D-F). Elevated IL-6 was most consistently observed with the lowest spread of data in Wistar rats (standard deviation 121.8 Wistar; 208.3 Lister Hooded; 307.0 Sprague Dawley, for a 10 mg/kg dose of poly I:C) and fewest non-responders (7 in Wistars over the 3 doses of poly I:C; 12 in Lister Hooded and 15 in Sprague Dawleys; Fig. 2D-F). We consider an IL6 level of 50 pg/ml or less to be a non-responder. Therefore, the Wistar rat strain was used for all subsequent experiments.
3.2. Repeated poly I:C only elicits a robust immune response on day 1 of poly I:C treatment

To further optimise the poly I:C dosing regimen, the effect of 5 days of dosing was investigated using a lower dose range. Body temperature was elevated at 3 h and 6 h post poly I:C to a similar extent on each day of dosing, showing both a main effect of dose and an interaction between day and dose (repeated GLMM, \(F_{3,26} = 30.510, p < 0.0001\) and \(F_{12,91} = 2.281, p = 0.014\); Fig. 3A). However, plasma IL-6 levels were only elevated on the first day of poly I:C dosing (ANOVA, \(F_{2,93} = 6.155, p = 0.003\); Fig. 3B).

3.3. mIA on GD15 elicits a maternal immune response in pregnant Wistar rats, reduced dam body weight without affecting litter numbers or body temperature

Following determination of best rat strain and protocol optimisation in non-pregnant animals, Wistar rats were mated in house and 10 mg/kg poly I:C injected i.p. in pregnant dams at GD15 (n = 16 poly I:C, 16 vehicle). As described above for non-pregnant female Wistar rats, 10 mg/kg poly I:C induced a significant elevation in plasma IL-6, 3 h post-injection (GLM; \(F_{1,28} = 18.10; p < 0.001\); Fig. 4A). Unlike in non-pregnant rats, core body temperature was not significantly affected at either 3 h, 6 h or 24 h (GLM; \(F_{1,28} = 3.35, p = 0.078; F_{1,28} = 1.25, p = 0.273\) and \(F_{1,17} = 3.13, p = 0.095\); Fig. 4B) post-injection. In contrast, poly I:C treatment negatively affected maternal body weight 6 h and 24 h post-injection (GLM, \(F_{1,27} = 9.94; p = 0.004\); and

Fig. 4. In pregnant Wistar rats, plasma IL-6 was measured at 3 h post-injection (A), maternal body temperature recorded at baseline, 3 h, 6 h, and 24 h post-injection (B), maternal body weight recorded at baseline, 3 h, 6 h, and 24 h post-injection (C), number of pups per litter (D) were recorded in response to maternal vehicle or poly I:C (GD15; i.p; n = 16 per treatment). Data are presented as mean ± SEM. Data were analysed by ANOVA, and univariate General Linear Models (GLM). \(P < 0.05, \, **P < 0.01, \, ***P < 0.001\) poly I:C compared with vehicle.
F_{1,27} = 6.19, p = 0.019, Fig. 4C), but not at 3 h post-injection (GLM, F_{1,28} = 1.05, p = 0.314). Poly I:C had no effect on litter size (GLM, F_{1,29} = 0.33; p = 0.57, Fig. 4D).

3.4. mIA on GD15 reduces placenta weight at GD21, but not body or brain weight

Poly I:C induced changes in the offspring of poly I:C treated dams at GD21. Placenta weight was significantly reduced following poly I:C treatment (GLMM, F_{1,14} = 21.20; P < 0.001; Fig. 5A) with a sex-specific effect that closely approached significance (male placentas were heavier; GLMM, F_{1,201} = 3.83; p = 0.052). However, neither pup body weight nor pup brain weight was significantly reduced in either male or female offspring (body weight: GLMM, F_{1,14} = 0.82; p = 0.381; Fig. 5B, brain weight: GLMM, F_{1,13} = 0.033; p = 0.859, Fig. 5C), resulting in reduced placenta to brain weight ratio in poly I:C-treated offspring (GLMM, F_{1,11} = 11.10; p = 0.006, Fig. 5D).

3.5. mIA on GD15 results in reduced male offspring body weight at PD21 and increases brain to body weight ratio

On PD21 we observed a significant treatment effect on pup body weight (GLMM, F_{1,111} = 7.43, p = 0.007, Fig. 6A) but not on pup brain weight (GLMM, F_{1,13} = 1.535, p = 0.304, Fig. 6B). Not all pups were assessed for brain weight as some went on to imaging and other studies, see above. However, when brain weight data were available, the ratio

Fig. 5. Effects of vehicle or poly I:C administered (i.p) at GD15 in female Wistar rats on female and male: pup placenta weight (A), body weight (B), brain weight (C) and placenta to brain ratio (D) at GD21. Pup and placenta numbers (vehicle female n = 46, poly I:C female n = 54; vehicle male n = 59; poly I:C male n = 55) are derived from 8 litters/dams per treatment group with an average of 13.5 pups per litter. Data are presented as mean ± SEM. For comparisons between offspring, General Linear Mixed Models (GLMM) using Restricted Maximum Likelihood (REML) estimation was used. **P < 0.01, ***P < 0.001, comparing male to females, and poly I:C with vehicle.
of brain to body weight was significantly affected by treatment with pups born to poly I:C treated dams showing a higher ratio than vehicle control pups (GLMM, F_{1,4} = 9.692, p = 0.036; Fig. 6C). Further, there was no significant effect of treatment on PD21 pup IL-6 levels (GLMM, F_{1,8} = 0.86, p = 0.776) nor on dam IL-6 levels (GLM, F_{1,8} = 0.98, p = 0.349); these levels were just within the level of ELISA detection, data not shown.

3.6. mIA on GD15 results in increased activated microglia in male hippocampi

We analysed seven microglia traits from the hippocampus of male offspring at PD21: the proportion of two stages (resting and intermediate) and that of amoeboid cells in the hippocampus as well as the total cell count. We found that both the proportion (shown as percentage) and number of amoeboid cells were significantly affected by treatment, Fig. 7. The proportion of amoeboid cells was significantly
higher in poly I:C treated hippocampi (GLM, $F_{1,15} = 7.959$, $p = 0.013$) as was the number of ameboid cells (GLM, $F_{1,15} = 8.953$, $p = 0.009$). Both traits remained significant after correction for multiple testing of seven traits following Benjamini and Hochberg (1995).

4. Discussion

This work presents the establishment of robust methods in our laboratory for inducing mIA in rats. We present an assessment of the effects of poly I:C-induced immune activation first in adult non-pregnant rats of three strains and then in pregnant female Wistar rats and their offspring of both sexes. An acute rise in plasma IL-6 was observed following poly I:C injection in pregnant and non-pregnant female rats which is similarly observed following influenza infection in humans (Kaiser et al., 2001) and has been proposed to drive the mIA-induced changes in offspring (Smith et al., 2007). Additionally, changes in poly I:C-treated offspring, such as placenta and pup growth restriction, reveals morphometric delays in both male and female offspring at early developmental time points. Detection of an increase in activated microglia supports the hypothesis of neuroinflammation induced by mIA, at least in male offspring in hippocampus, however more work is needed to confirm this, and to investigate the time course, other brain regions and of course, sex dependent effects.

First we demonstrate that, although poly I:C increased plasma IL-6 levels and body temperature in all three rat strains, these effects were most robust and least variable in Wistar rats. Further validation experiments to test repeated versus acute poly-I:C exposure revealed that repeated administration of poly I:C lowered rather than increased plasma IL-6 levels above acute levels, in spite of consistently raised body temperature. Indeed plasma IL-6 was almost undetectable after day 1. IL-6 was not elevated in the offspring at PD21 or the dams at this time-point. One of the reasons for using Poly I:C and not a live virus is the induction of a discrete and short-lived immune activation following acute administration, therefore this result was expected but important to confirm, it is unclear the significance of elevated body temperature in the absence of IL-6 elevation. Sub-populations of schizophrenia and depressed patients have elevated cytokine levels representing an important step towards patient stratification (see below and Pariante 2017 for review in depression and Upthergrove et al., 2014 for schizophrenia). This may be precipitated by further insults/infection/stressors during development which can be modelled by a two-hit model, currently being attempted by several research groups, and a distinct advantage of this neurodevelopmental model (see Estes and McAllister, 2016 for review).

Strain dependent effects have long been observed in experimental research. Behavioural tests measuring learning, memory, anxiety and regional volumetric measurements have shown clear strain and sex dependent differences in rats (Keeley et al., 2015). Furthermore, strain dependent variations in brain cytokine induction and offspring gene expression have also been observed in response to stressful stimuli (Neeley et al., 2011; Porterfield et al., 2011). Our results show noticeable differences amongst strains regarding animals that “respond”
versus “non-responders” with Wistar rats showing the most consistent elevation of plasma IL-6 in response to poly I:C treatment.

High versus low inflammatory responses have been observed in patients with schizophrenia and may suggest the need to stratify patients when considering treatment options (Fillman et al., 2013). In the depression field there is growing evidence to support the hypothesis that non-responders to standard medication have a pro-inflammatory profile (see (Pariante, 2017) for a recent update). Most likely this will also be the case for schizophrenia as suggested by Pariante. Indeed, Mondelli and colleagues have shown that, in first episode psychosis, non-responders to treatment have elevated serum IL-6 and interferon-γ (Mondelli et al. 2015). This essential area of research is expanding. Indeed, Carol Tamminga and colleagues have recently demonstrated three distinct biotypes of psychosis patients who will likely require differential therapeutic strategies (Clementz et al. 2016). Our pregnant rats show an inflammatory profile, not sustained to PD21 in pups or dams, however microglial activation was observed at PD21 indicative of neuroinflammation. Identification of individual differences between animals and linking this to phenotype will be important in future studies.

Despite noticeable differences amongst strains regarding “responders” versus “non-responders”, all three strains exhibited a bell shaped dose response to increasing concentrations of poly I:C. A number of studies have seen similar responses in which higher doses of inflammatory stimuli paradoxically result in an attenuated immune response (Scheller et al., 2011). Furthermore, following repeated administration of poly I:C to Wistar rats, we observed a significantly attenuated response to poly I:C as measured by IL-6 plasma levels. This phenomenon, known as immune tolerance, in which an immune-stimulating agent has diminished efficacy to induce a pro-inflammatory cytokine reaction compared to first exposure has previously been seen in response to LPS (Fan and Cook, 2004; Medvedev et al., 2006).

It should also be considered that alternative methods of inducing mIA may be used, such as influenza virus or LPS (Shi et al., 2003; Urakubo et al., 2001), producing different outcomes. Smolders and colleagues demonstrate that LPS, but not poly I:C or IL-6, led to direct microglial activation in brain slices (Smolders et al., 2015). Whilst using a live virus such as influenza may represent a more translational model of mIA, poly I:C mimics many of the effects of the live virus but allows more precise control over the timing and the degree of the immune response (Reisinger et al., 2015). Additionally, alternative read-outs of poly I:C-induced immune activation could be measured including type-1 interferons (Murray et al., 2015) and IL-17 (Choi et al., 2016) in addition to further cytokine panels (Hsiao and Patterson, 2011). However, the increase in IL-6 expression following poly I:C administration has been robust and consistent across multiple rodent and human studies (Patterson, 2009) and IL-6 acts upstream of IL-17a and downstream of IFNβ (Choi et al., 2016; Murray et al., 2015).

Following identification of optimal dose, strain and administration regimes of poly I:C, a significant reduction in offspring body weight was observed in male pups of poly I:C treated pregnant Wistar rats at PD21, but not GD21. Reduced placenta to brain weight was also observed at GD21, and increased brain to body weight at PD21, possibly consistent with the macrocephaly sometimes observed in early phases of ASD (Courchesne et al., 2011). However an important consideration with our data is the lower number of offspring included in brain weight analysis at PD21, due to offspring brains being used for other studies, eg imaging. Further investigation is required to determine the mechanisms by which mIA results in impaired growth. Most importantly, we observed a large and significant reduction in placental weight post-poly I:C. Previous work has highlighted a role for the placenta in mediating the effects of mIA (Choi et al., 2016; Hsiao and Patterson, 2011). Hsiao and Patterson demonstrate that an elevation in maternal IL-6 reduces placental levels of growth hormone and insulin-like growth factor; key hormones for embryonic developmental (Hsiao and Patterson, 2011). We have begun to analyse placental changes in some detail and are starting to reveal very interesting and sex specific effects induced by poly I:C, although reduced placenta weight was clearly observed in both sexes here. However, it is interesting to note that, despite a reduced placental weight, fetal body and brain weight was maintained in the poly I:C group, resulting in a reduced placental:fetal brain weight ratio, implying that placental function may have been adapted to preserve this. Multiple transport pathways may be affected, but examination of amino acid transport as a major determinant of fetal weight (protein) accrual is an attractive candidate for further study. Recent work by Weinerberger and colleagues has identified risk factors genes for schizophrenia that are involved in early life consequences and placenta (Ursini et al., 2017, 2018). This suggests that understanding mechanisms of reduced placenta weight, and likely function, in the model could be of particular importance for schizophrenia research.

Our results are also consistent with epidemiological data demonstrating that low birth and placental weight increase the risk of developing schizophrenia (Wahlbeck et al., 2001), albeit we did not observe reduced body weight in our pups until PD21. Additional studies are needed to fully elucidate the effects of mIA on the maternal/foetal interface and how this in turn affects subsequent development of the offspring, work we are currently undertaking.

Post-mortem immunohistochemical analysis in the hippocampus on PD21 using anti-Iba1 antibody revealed that the total number of microglial cells remain unaffected between the two groups, however there was a significant increase in the density of amoeboid cells in male pups born to poly I:C treated mothers, accompanied by a non-significant decline in the intermediate cell phenotype. Due to the high numbers of receptors for inflammatory mediators, the hippocampus is a region that is particularly vulnerable to inflammatory insult (Seki et al., 2013). In a previous study, Manitz et al., 2013 investigated microglial cell numbers in pups at PD10, PD30 and PD100 in several regions, including the hippocampus. Maternal immune activation was induced at GD9. Results showed an increase in microglial cells at PD30 in all regions, as well as an increase in the frontal cortex at PD100, with no significant increase at PD10. Despite an initial lack of response at PD10, the significant increase at adolescence (PD30) indicates the dynamic nature of microglial activation. This increase demonstrates their ability to proliferate and migrate to the site of immune response, as well as alter morphological states when activated. At adulthood, the immunological activation remains only within frontal association cortex, which was suggested to be linked with the cognitive deficits and negative symptoms present in schizophrenia. Various other laboratories have replicated the rodent model of mIA with Poly I:C, reporting both increased, no change or even a decrease in numbers of activated microglia within different regions of the brain (see review by Smolders et al., 2018). There are variations in the rodent species used, the timing and intensity of mIA, the age of the offspring at culling and the analysis method used (some reporting density and not morphological analysis of activation state) making overall conclusions difficult. Our initial finding in male offspring emphasizes the impact and importance of investigating early developmental time-points to identify and establish any potential disease specific biomarkers as well as detection of any important changes that may be masked later in adulthood. There are of course limitations to our study, we only analysed males, only one brain region, and offspring are taken from a small number of dams. However, our statistical analysis takes this into account and we believe this is a fair representation of microglial activation in male offspring at PD21 in spite of these experimental limitations.

5. Conclusion

This study provides a robust and systematic assessment of poly I:C-induced plasma IL-6, body temperature and weight alterations in pregnant rats and explores the consequences of this immune challenge on morphology and neurobiology in male and female offspring at two developmentally distinct time points. These findings, which we will
confirm by functional studies, add to the growing body of evidence that this model is a useful tool to explore the effect of mIA. This model has clear advantages as we have outlined above. Of course, it is important to emphasise that these conditions in Wistar rats were optimal in our laboratory, this may not be the case for all other laboratories. Indeed, as discussed by a recent working group at the ACNP annual conference, 2017, with reporting guidelines now published in (Kentner et al., 2018) certain methodological issues remain unresolved. These include variability between Poly I: C batches, and contamination of poly I: C with LPS, the importance of comparing both sexes, housing conditions (i.e. Individually Ventilated Caging-IVCs) compared with open caging (Mueller et al. 2018) and very importantly, the establishment of a reliable way to identify affected offspring at an early developmental stage for phenotypic evaluation from adolescence through to adulthood and potentially old age, combined with the study of resilience. Once these issues have been overcome, the model will be extremely valuable in investigating the developmental trajectory of appropriate and ethologically relevant behavioural deficits in conjunction with electrophysiological and neuroimaging readouts. This work will contribute to improved understanding of NDDs and ultimately to the development of enhanced therapeutic and potentially even preventative strategies for patients.

Acknowledgements

The authors would like to thank Dr Nick Ashton, Dr Jo Glazier and Miss Alaa Al-Khalifa, University of Manchester, for assistance with pup and placenta measurements and harvesting. We would also like to thank Dr Herve Boutin, University of Manchester and Dr Balazs Balfai, Roche for helpful discussion.

Sources of funding

This work was supported by Roche and the University of Manchester MRC Confidence in Concept scheme.

Disclosure

Irene Knuesel and Eric Prinssen are full-time employees and shareholders (EP) of Roche. Other authors decline no competing financial interests.

References

